Penrose and its singularity theorem
Roger Penrose in 1965, using the way light cones behave in general relativity, together with the fact that gravity is always attractive, he showed that a star collapsing under its own gravity is trapped in a region whose surface eventually shrinks to zero size. And, since the surface of the region shrinks to zero, so too must its volume. All the matter in the star will be compressed into a region of zero volume, so the density of matter and the curvature of space-time become infinite. In other words, one has a singularity contained within a region of space-time known as a black hole.
Penrose’s theorem had shown that any collapsing star must end in a singularity; the time-reversed argument showed that any Friedmann-like expanding universe must have begun with a singularity. For technical reasons, Penrose’s theorem required that the universe be infinite in space. So I could in fact use it to prove that there should be a singularity only if the universe was expanding fast enough to avoid collapsing again.